The combined Influence of Instantons and Strong Magnetic Fields on Quark Matter

Jorn Boomsma

Vrije Universiteit Amsterdam Faculty of Sciences Department of Physics and Astronomy Theoretical Physics

April 29, 2010

In collaboration with: D. Boer Based on PRD 78, 054027 (2008) and PRD 81, 074005 (2010)

Outline

- 1. Part 1: Spontaneous CP violation at $\theta = \pi$
 - 1.1 Role of instantons
 - 1.2 Current mass dependence
 - 1.3 Nonzero temperature
- 2. Part 2: Strong magnetic fields
 - 2.1 *B*-field effects on quark matter
 - 2.2 Magnetic enhancement of χSB
 - 2.3 Spontaneous isospin violation
 - 2.4 Instantons
 - 2.5 de Haas-van Alphen effect
 - 2.6 Metastable phases
 - 2.7 Nonzero temperature

Spontaneous CP violation at $\theta = \pi$ I

- ▶ Kharzeev, Pisarski and Tytgat (1998) suggested using χ PT that at high temperature metastable CP-violating states could exist
- ▶ Dashen (1971): spontaneous CP violation (SCPV) at $\theta = \pi$
- ▶ It has been studied extensively in Chiral Perturbation Theory, Witten (1980), di Vecchia & Veneziano (1980), Smilga (1999), Tytgat (2000), Akemann *et al.* (2002), Creutz (2004), Metlitski & Zhitnitsky (2005, 2006), ...

Spontaneous CP violation at $\theta = \pi$ II

- ► We look at the NJL-model Nambu & Jona-Lasinio (1961)
- ► The effect of instantons are mimicked by the 't Hooft determinant interaction
 't Hooft (1976, 1986)
- ▶ In this part of the talk the focus is on the current mass and temperature dependence

Arguments of Kharzeev, Pisarski and Tytgat

▶ The three-flavor chiral Lagrangian

$$\mathscr{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{\dagger} \right] + \Sigma \operatorname{Re} \left[\operatorname{Tr}(\mathrm{MU}) \right] - \frac{\tau}{2} (\mathrm{i} \log \det \mathrm{U} + \theta)^2$$

where $\Sigma = |\langle \bar{\psi}\psi \rangle|$, M the quark mass matrix, τ the topological susceptibility and U an U(3) field representing the pseudo-Goldstone bosons

- ▶ Potential contained in this Lagrangian has CP violating metastable states when $\tau/\Sigma < 0.251 m_u$ (using the values of Tytgat (2000))
- ► Kharzeev, Pisarski and Tytgat considered the option that τ/Σ is temperature dependent, i.e. $\tau/\Sigma \sim (T_c T)^{3/2}$
- \triangleright Close to T_c CP violating metastable states appear

Spontaneous CP violating at $\theta = \pi$

Using the results of Tytgat (2000) the following phase diagram can be obtained

- Asymptotes depend on ratio τ/Σ
- ▶ Study same diagram in the NJL model

The NJL model

The Lagrangian

$$\mathscr{L} = \mathscr{L}_0 + \mathscr{L}_{\mathsf{sym}} + \mathscr{L}_{\mathsf{det}}$$

with

Free part
$$\mathscr{L}_0 = \bar{\psi} (i\partial \!\!\!/ - m + \gamma_0 \mu) \psi$$

Chiral symmetric interaction
$$\mathscr{L}_{\text{sym}} = G_1 \left[\left(\bar{\psi} \tau_a \psi \right)^2 + \left(\bar{\psi} \tau_a i \gamma_5 \psi \right)^2 \right]$$

Determinant interaction $\mathscr{L}_{\mathsf{det}} = 2G_2 e^{i\theta} \left[\mathsf{det} \left\{ \bar{\psi} \left(1 - \gamma_5 \right) \psi \right\} + \mathsf{h.c.} \right]$

and

$$m=\operatorname{diag}\left(m_u,m_d
ight),$$
 We want to vary G_2 $\psi=inom{u}{d},$ Usually $G_1=G_2$

The τ_a are the generators of U(2) Parameters are fitted to experimental values of m_{π} , f_{π} and $\langle \bar{\psi}\psi \rangle$

The effective potential in mean-field approximation

► The interaction terms are "linearized"

$$(\bar{\psi}\tau_a\psi)^2 \simeq 2\langle\bar{\psi}\tau_a\psi\rangle\,\bar{\psi}\tau_a\psi - \langle\bar{\psi}\tau_a\psi\rangle^2$$

- ► Consider only charge neutral condensates $\langle \bar{\psi}\tau_0\psi\rangle$, $\langle \bar{\psi}\tau_3\psi\rangle$, $\langle \bar{\psi}\tau_0i\gamma_5\psi\rangle$, and $\langle \bar{\psi}\tau_3i\gamma_5\psi\rangle$
- Lagrangian quadratic in the quark fields
- Perform the integration over the quark fields

The effective potential

The thermal effective potential at $\theta = \pi$ is

$$\mathcal{V} = \frac{\alpha_0^2 + \beta_3}{4(G_1 - G_2)} + \frac{\alpha_3^2 + \beta_0^2}{4(G_1 + G_2)} - TN_c \sum_{p_0 = (2n+1)\pi T} \int \frac{d^3p}{(2\pi)^3} \ln \det \left[i\gamma_0 p_0 + \gamma_i p_i - \mathcal{M} - \gamma_0 \mu \right]$$

where

$$\alpha_0 = -2(G_1 - G_2) \langle \bar{\psi}\tau_0\psi \rangle \qquad \alpha_3 = -2(G_1 + G_2) \langle \bar{\psi}\tau_3\psi \rangle \beta_0 = -2(G_1 + G_2) \langle \bar{\psi}\tau_0 i\gamma_5\psi \rangle \qquad \beta_3 = -2(G_1 - G_2) \langle \bar{\psi}\tau_3 i\gamma_5\psi \rangle$$

and

$$\mathcal{M} = (\frac{m_u + m_d}{2} + \alpha_0 + \beta_0 i \gamma_5) \tau_0 + (\frac{m_u - m_d}{2} + \alpha_3 + \beta_3 i \gamma_5) \tau_3$$

We take $G_1 \neq G_2$

Effect of the instanton interaction

- Keep $G_1 + G_2$ fixed, determines $\theta = 0$ -physics
- ▶ Vary $c = G_2/(G_1 + G_2)$ between 0 and 1/2 Frank, Buballa & Oertel (2003)
- Exact value of c is unknown in Nature, from $N_f=3$ and m_η considerations probably $c\approx 0.2$ Frank, Buballa & Oertel (2003)

The combined Influence of Instantons and Strong Magnetic Fields on Quark Matter

The (c, m) phase diagram

For every m a critical c exists, i.e., the instanton interaction has to be strong enough w.r.t. m for SCPV to occur.

The (m_u, m_d) -phase-diagram for $\theta = \pi$ at c = .4, T = 0

Figure similar to 3 flavor χ PT, Creutz (2004)

Two flavor NJL asymptotes depend on c instead of m_s

In two flavor χ PT asymptotes depend on τ/Σ , no upper bound present Tytgat (2000)

The combined Influence of Instantons and Strong Magnetic Fields on Quark Matter

The (m_u, m_d) -phase-diagram for $\theta = \pi$ at c = .4, T = 120

The CP-violating region becomes smaller with increasing temperature

SCPV is a low-energy phenomenon

The (m_u, m_d) -phase-diagram for $\theta = \pi$ at c = .4, T = 150

Mainly the high-mass regime is affected

The asymptotes are not much affected

This may indicate that suggestions for metastable states may not hold in QCD

Conclusions

- lacktriangle Instantons can cause spontaneous SCPV at $heta=\pi$
- ► The actual occurrence of SPCV depends on the strength of the instanton interaction w.r.t. quark masses
- SCPV is a low-energy phenomenon
- No metastable phases were found neither CP violating nor CP conserving ones

Part 2: Strong magnetic fields

- Very strong magnetic fields occur in:
 - ► Heavy ion collisions: 10¹⁹ G Kharzeev, McLerran & Warringa (2009); Skokov, Illarionov & Toneev (2009)
 - Ordinary neutron stars up to 10¹³ G, magnetars up to 10¹⁵ G and possibly in core up to 10¹⁸ G
 Duncan & Thompson (1992); Thompson & Duncan (1993); Lattimer & Prakash (2007)
- ▶ In order to understand these systems we have to understand how magnetic fields affect quark matter

Charged particles in a strong magnetic field I

► Effect: Landau quantization Landau & Lifshitz (1977)

- ▶ Discrete levels get subsequently filled → oscillation with B
- ▶ de Haas-van Alphen effect
- Similar effects on quark matter?

Charged particles in a strong magnetic field II

- Perform study using two-flavor NJL model
- ▶ This part: combined study of the influence of instantons and magnetic fields at $\theta = 0$
- We will assume that no CP violation takes place $(\beta_0 = \beta_3 = 0)$
- ▶ For convenience we introduce the constituent masses

$$M_{u} = m + \alpha_{0} + \alpha_{3}$$

$$= m - 2(G_{1} + G_{2}) \langle \bar{\psi}\tau_{0}\psi \rangle - 2(G_{1} - G_{2}) \langle \bar{\psi}\tau_{3}\psi \rangle$$

$$M_{d} = m + \alpha_{0} - \alpha_{3}$$

$$= m - 2(G_{1} + G_{2}) \langle \bar{\psi}\tau_{0}\psi \rangle + 2(G_{1} - G_{2}) \langle \bar{\psi}\tau_{3}\psi \rangle$$

Including the magnetic field

- Choose magnetic field in z-direction
- ▶ Choose gauge such that $A^{\mu} = (0, -By, 0, 0)$
- Obtain new dispersion relation

$$p_{0n}^2 = p_z^2 + M^2 + (2n + 1 - \sigma)|q|B$$
.

► Thermal integral transforms according to Chakrabarty (1996); Fraga & Mizher (2008); Fukushima & Warringa (2008)

$$T \sum_{p_0} \int \frac{d^3p}{(2\pi)^3} \quad \rightarrow \quad \frac{|q|BT}{2\pi} \sum_{p_0} \sum_{n=0}^{\infty} \int \frac{dp_z}{2\pi} \,,$$

The effective potential at nonzero magnetic field

$$\mathcal{V} = \mathcal{V}_0 + \mathcal{V}_1(B) + \mathcal{V}_2(B, \mu, T)$$

with

$$\mathcal{V}_0 = \frac{(M_0 - m)^2}{4(G_1 + G_2)} + \frac{M_3^2}{4(G_1 - G_2)} - 2N_c \sum_{f=u}^d \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \sqrt{\mathbf{p}^2 + M_f^2},$$

$$\mathcal{V}_1(B) = -\frac{N_c}{2\pi^2} \sum_{f=u}^d (|q_f|B)^2 \left[\zeta'(-1, x_f) - \frac{1}{2} (x_f^2 - x_f) \ln x_f + \frac{x_f^2}{4} \right],$$

$$\mathcal{V}_2(B, \mu T) = -\frac{N_c}{2\pi} \sum_{\sigma, n, f} (|q_f|B) \int \frac{\mathrm{d}p_z}{2\pi} \left\{ T \ln \left[1 + e^{-[E_p(B) + \mu_f]/T} \right] + T \ln \left[1 + e^{-[E_p(B) - \mu_f]/T} \right] \right\},$$
where $x_f = \frac{M_f^2}{2|q_f|B}$ and $\zeta'(-1, x_f) = \frac{d\zeta(z, x_f)}{dz}|_{z=-1}$

The combined Influence of Instantons and Strong Magnetic Fields on Quark Matter

B-dependence of masses without instanton interaction

- ▶ B field anti-aligns helicities of quarks and antiquarks → more strongly bound by interaction Klevansky (1992)
- Constituent quark masses increase with magnetic field $(m_{\pi}^2/e = 0.33 \times 10^{19} \, \text{G})$

Magnetic enhancement of χSB

small isospin violation

Nonzero chemical potential at $G_2 = 0$

Up quark

Down quark

- ▶ Similar phase structure found by Ebert et al. 2000; Ebert and Klimenko (2003) with $G_2 = G_1$
- ▶ Discontinuous de Haas-van Alphen effect
- ▶ A region exists with a considerable mass difference \rightarrow large spontaneous breaking of isospin ($\langle \bar{\psi}\tau_3\psi\rangle \neq 0$)

Effect of the instanton interaction I

- Strong magnetic field induces different behavior quarks
- Spontaneous isospin violation
- ► Interaction is flavor mixing → counters effect of magnetic field
- Investigate this competition as function of c

Effect of the instanton interaction II

- ▶ C_0 phase disappears with increasing c (= $G_2/(G_1 + G_2)$)
- Regions with large mass differences disappear
- ▶ Behavior similar to Frank, Buballa & Oertel (2003) $(\mu_I \neq 0, B = 0)$

Metastable states

Effective potential as function of M_u and M_d at

$$B = 5m_{\pi}^2/e$$
, $c = 0.03$, $\mu = 378\,\mathrm{MeV}$

Metastable states

Effective potential as function of M_u and M_d at

$$B = 5m_{\pi}^2/e$$
, $c = 0.1$, $\mu = 378 \, \text{MeV}$

Nearly degenerate metastable states

Normalized effective potential as function of $M=M_u=M_d$ at

$$B=5m_{\pi}^2/e,\ c=1/2\ (G_1=G_2),\ \mu=378\,{
m MeV}$$

T-dependence of masses at c = 1/2

- ▶ High T χ symmetry restoring transition remains crossover $(m_q \neq 0)$ at nonzero B
- ► First order transition in linear sigma model coupled to quarks Stronger at larger B Mizher & Fraga (2009)

Influence of higher Landau levels c = 1/2, $B = 15m_{\pi}^2/e$

- More Landau levels → transition sharper
- Qualitative details unchanged

Conclusions

- A magnetic field enhances chiral symmetry breaking and allows for the possibility of spontaneous isospin breaking
- ▶ The instanton interaction counters the effect of magnetic field
- de Haas-van Alphen effect is discontinuous in NJL model
- Also metastable states develop that differ considerably in the amount of chiral symmetry breaking
- High-temperature phase transition remains crossover at nonzero B
- ▶ NJL: $G_1 \neq G_2$ gives important qualitative differences
 - $G_1 = G_2 \rightarrow M_u = M_d \rightarrow \text{no violation of isospin}$

PRD 81, 074005 (2010)